Series

Characteristics

The Series 70 consists of special short stroke pushbuttons for use with membrane keyboards. It is particularly suited for:

- PCBs

The use of single LEDs ensures that the entire control panel is very well illuminated. The module is offered in six colours and in a round or square design.

Functions

The Series 70 incorporates the following functions:

- Indicator
- Pushbutton
- Illuminated pushbutton

Market segments

The EAO Series 70 is especially suited for applications in the segments:

- Machinery and Automation
- Medicinal technology
- Laboratory and measuring equipment

Please refer to the EAO website to obtain detailed information regarding this series www.products.eao.com Configure a product to your exact needs and request a quotation.

Overview
PCB pushbuttons
Illumination element 4
Switching element without illumination 5
Switching element with illumination 6
Accessories 7
Drawings 10
Technical data 11
Application guidelines 13
Index 15

70 PCB pushbuttons

Illumination element

Product can differ from the current configuration.

Additional Information

- The customer has to decide what series resistor shall be used to the LED
- Dimensions with fitted lens see details «Lens"
- Luminosity and wave length variations caused by LED manufacturing processes may cause slight differences regarding the illumination

Dimensions

Equipment consisting of (schematic overview)

Lens
page 7

LED

Illumination element

Each Part Number listed below includes all the black components shown in the 3D-drawing.

To obtain a complete unit, please select the red components from the pages shown.

LED colour	Forward voltage typ.	Lumi. intensity	Dom. wavelength	Terminal	Part No.			Weight
Illumination element								
Single-LED red	2.0 VDC @ 20 mA	160 mcd	625 nm	PCB	70-820.2S	3	2	0.001 kg
Single-LED green	3.2 VDC @ 20 mA	650 mcd	525 nm	PCB	70-820.5S	3	2	0.001 kg
Illumination element								
				PCB	92-800.042	1		0.001 kg

The component layouts you will find from page 10

Switching element without illumination
Equipment consisting of (schematic overview)

Each Part Number listed below includes all the black components shown in the 3D-drawing.

To obtain a complete unit, please select the red components from the pages shown.

The component layouts you will find from page 10

70 PCB pushbuttons

Switching element with illumination

Product can differ from the current configuration.

Additional Information

- Contact normally open
- Switching action momentary
- The customer has to decide what series resistor shall be used to the LED
- Luminosity and wave length variations caused by LED manufacturing processes may cause slight differences regarding the illumination
- Dimensions with fitted lens see details «Lens»

Dimensions

Equipment consisting of (schematic overview)

Lens
page 7

LED
 ment

Each Part Number listed below includes all the black components shown in the 3D-drawing.

To obtain a complete unit, please select the red components from the pages shown.

LED colour	Forward voltage typ.		Lumi. intensity	Dom. wavelength	Terminal	Part No.			Weight
Switching element with illumination									
Single-LED red	2.0 VDC @ 20 mA	Gold	160 mcd	625 nm	PCB	70-220.2S	4	3	0.001 kg
Single-LED yellow	2.9 VDC @ 20 mA	Gold	600 mcd	580 nm	PCB	70-220.4S	4	3	0.001 kg
Single-LED green	3.2 VDC @ 20 mA	Gold	650 mcd	525 nm	PCB	70-220.5S	4	3	0.001 kg
Single-LED blue	3.0 VDC @ 20 mA	Gold	250 mcd	467 nm	PCB	70-220.6S	4	3	0.001 kg
Single-LED white	3.2 VDC @ 20 mA	Gold	500 mcd	$x=0.3 / y=0.3$	PCB	70-220.9S	4	3	0.001 kg
Switching element with illumination									
		Gold			PCB	92-851.342	4	1	0.001 kg

The component layouts you will find from page 10

Front

Lens

Dimensions

Lens	Part No.	Weight
Lens, Front dimension $19.05 \times 19.05 \mathrm{~mm}$		
Plastic white translucent	70-920.9	0.001 kg
Lens, Front dimension 15.4×15.4 mm		
Plastic red translucent	70-921.2	0.001 kg
Plastic orange translucent	70-921.3	0.001 kg
Plastic yellow translucent	70-921.4	0.001 kg
Plastic green translucent	70-921.5	0.001 kg
Plastic blue translucent	70-921.6	0.001 kg
Plastic white translucent	70-921.9	0.001 kg

Lens, Front dimension 12.4×12.4 mm

Plastic red translucent	$\mathbf{7 0 - 9 2 2 . 2}$	0.001 kg
Plastic orange translucent	$\mathbf{7 0 - 9 2 2 . 3}$	0.001 kg
Plastic yellow translucent	$\mathbf{7 0 - 9 2 2 . 4}$	
Plastic green translucent	$\mathbf{0 . 0 0 1} \mathrm{kg}$	
Plastic blue translucent	$\mathbf{7 0 - 9 2 2 . 5}$	
Plastic white translucent	$\mathbf{7 0 - 9 2 2 . 6}$	
	$\mathbf{0 . 0 0 1} \mathrm{kg}$	

Lens, Front dimension Ø 15.4 mm

Plastic red translucent	$\mathbf{7 0 - 9 1 1 . 2}$	0.001 kg
Plastic orange translucent	$\mathbf{7 0 - 9 1 1 . 3}$	0.001 kg
Plastic yellow translucent	$\mathbf{7 0 - 9 1 1 . 4}$	
Plastic green translucent	$\mathbf{0 . 0 0 1} \mathrm{kg}$	
Kunststoff weiss transluzent	$\mathbf{7 0 - 9 1 1 . 5}$	

70 Accessories

Spacing cap

Dimensions

Illumination

Single-LED, T1 Bi-Pin

Additional Information

- The customer has to decide what series resistor shall be used to the LED
- Luminosity and wave length variations caused by LED manufacturing processes may cause slight differences regarding the illumination

LED colour	Forward voltage typ.	Lumi. intensity	Dom. wavelength	Part No.	Weight

Single-LED

Single-LED red	2.0 VDC @ 20 mA	160 mcd	625 nm	$\mathbf{1 0 - 2 6 0 1 . 3 1 7 2 S}$	0.001 kg
Single-LED orange	2.0 VDC @ 20 mA	165 mcd	605 nm	$\mathbf{1 0 - 2 6 0 1 . 3 1 7 3 S}$	0.001 kg
Single-LED yellow	2.9 VDC @ 20 mA	600 mcd	580 nm	$\mathbf{1 0 - 2 6 0 3 . 3 1 7 4 S}$	0.001 kg
Single-LED green	3.2 VDC @ 20 mA	650 mcd	525 nm	$\mathbf{1 0 - 2 6 0 3 . 3 1 7 5 S}$	0.001 kg
Single-LED blue	3.0 VDC @ 20 mA	250 mcd	467 nm	$\mathbf{1 0 - 2 6 0 3 . 3 1 7 6 S}$	0.001 kg
Single-LED white	3.2 VDC @ 20 mA	500 mcd	$x=0.3 / \mathrm{y}=0.3$	$\mathbf{1 0 - 2 6 0 3 . 3 1 7 8 S}$	0.001 kg

70 Drawings

Drawings

Single-LED

Drilling plan (element side)
B Holes for LED
C Holes for contact pins
Pad max. Ø 2.5 mm
Through-connection recommended

Component layout 4

Switching element illuminated Part No. 92-851.342

Switching system

Short-travel switching system with two independent contact points and tactile operation. Guarantees reliable switching even of very light loads.
1 normally open contact

Material

Material of contact
Gold-plated silver

Switching element

Thermoplastic Polyester (PET, PBT) and Polyacetale (POM)

Mechanical characteristics

Actuating force

with overlay foil $4 \mathrm{~N} \pm 1,5 \mathrm{~N}$
Max. actuating force $>50 \mathrm{~N}$, as per DIN 42115

Actuating travel

0.4 mm

Rebound time
$\leq 1 \mathrm{~ms}$

Resistance to heat of soldering

$250^{\circ} \mathrm{C}, 3$ s (PCB assembly)
$320^{\circ} \mathrm{C}, 3 \mathrm{~s}$ (when using a soldering iron)

Mechanical lifetime

≥ 5 Mio. operations (switching element without overlay)
≥ 1 Mio. operations (switching element under overlay)

Electrical characteristics

Contact resistance

Starting value (initial) $\leq 100 \mathrm{~m} \Omega$, as per IEC 60512-2-2b

Isolation resistance

$\geq 1000 \mathrm{M} \Omega$

Contact resistance

$\leq 100 \mathrm{~m} \Omega$
as per 500000 cycles of operation at $12 \mathrm{VDC}, 5 \mathrm{~mA}$ resistive load $\leq 200 \mathrm{~m} \Omega$

Electrical life

≥ 500000 operations at 42 VDC, 50 mA , as per IEC 60512-5-9c When attention is paid to the direction of current flow from terminal $3 / 4$ to $1 / 2$ the electrical life can be prolonged.

Switch rating

Switching voltage VDC/NAC min. 50 mV max. 42 V Switching current VDC/VAC min. $10 \mu \mathrm{~A} \quad$ max. 100 mA Power rating max. 2 W

Electric strength

500 VAC, 50 Hz , 1 min , as per IEC 60512-2-4a

Environmental conditions

Storage temperature

$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$

Operating temperature

$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Approvals

Declaration ot conformity
CE

Switching element non-illuminated Part No. 70-100.0 and 70-101.0

Switching system
Short-travel switching system with two independent contact points and tactile operation. Guarantees reliable switching even of very light loads.
1 normally open contact

Material
Material of contact
Silver (Ag)

Mechanical characteristics

Actuating force

with overlay foil $5 \mathrm{~N} \pm 2 \mathrm{~N}$
Max. actuating force $>50 \mathrm{~N}$, as per DIN 42115

Actuating travel

0.3 mm

Rebound time
$\leq 5 \mathrm{~ms}$

Mechanical lifetime

> 1 Mio. operations with overlay

Electrical characteristics

Isolation resistance
$\geq 50 \mathrm{M} \Omega$

Contact resistance

$\leq 100 \mathrm{~m} \Omega$
as per 500000 cycles of operation at $12 \mathrm{VDC}, 5 \mathrm{~mA}$ resistive
load $\leq 200 \mathrm{~m} \Omega$

70

Electrical life

at $5 \mathrm{VDC}, 1 \mathrm{~mA}>1$ million operations at $24 \mathrm{VDC}, 1 \mathrm{~mA}>100000$ operations

Switch rating

≤ 1 watt (resistive load)

Switch rating

$\leq 24 \mathrm{VDC}, \leq 50 \mathrm{~mA}$

Electric strength

250 VAC for 1 min.

Environmental conditions
Storage temperature
$-30^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Operating temperature
$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Approvals
Declaration ot conformity
CE

Switching element non-illuminated Part No. 70-201.0

Switching system
Short-travel switching system with two independent contact points and tactile operation. Guarantees reliable switching even of very light loads.
1 normally open contact

Material

Material of contact
Gold-plated silver

Switching element

Thermoplastic Polyester (PET, PBT) and Polyacetale (POM)

Mechanical characteristics

Actuating force

with overlay foil $2.1 \mathrm{~N} \pm 0.2 \mathrm{~N}$
Max. actuating force > 50 N , as per DIN 42115

Actuating travel

max. 0.5 mm

Rebound time

$\leq 1 \mathrm{~ms}$

Resistance to heat of soldering

$260{ }^{\circ} \mathrm{C}$, 3 s, as per IEC 60068-2-20

Mechanical lifetime

≥ 5 Mio. operations (switching element without overlay)
≥ 1 Mio. operations (switching element under overlay)

Front protection

front with overlay foil IP 65

Electrical characteristics

Contact resistance

Starting value (initial) $\leq 100 \mathrm{~m} \Omega$, as per IEC 60512-2-2b

Isolation resistance

$\geq 1000 \mathrm{M} \Omega$

Contact resistance

$\leq 100 \mathrm{~m} \Omega$
as per 500000 cycles of operation at $12 \mathrm{VDC}, 5 \mathrm{~mA}$ resistive load $\leq 200 \mathrm{~m} \Omega$

Electrical life

≥ 500000 operations at 42 VDC, 50 mA , as per IEC 60512-5-9c When attention is paid to the direction of current flow from terminal $3 / 4$ to $1 / 2$ the electrical life can be prolonged.

Switch rating

Switching voltage VDCNAC	$\min .50 \mathrm{mV}$	$\max .42 \mathrm{~V}$
Switching current VDC/VAC	$\min .10 \mathrm{~mA}$	$\max .100 \mathrm{~mA}$
Switch rating	$\max .2 \mathrm{~W}$	

Switch rating max. 2 W

Electric strength
500 VAC, 50 Hz , 1 min, as per IEC 60512-2-4a

Environmental conditions

Storage temperature

$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Operating temperature
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Approvals

Declaration ot conformity
CE

Suppressor circuits

When switching inductive loads such as relays, DC motors, and DC solenoids, it is always important to absorb surges (e.g. with a diode) to protect the contacts. When these inductive loads are switched off, a counter emf can severely damage switch contacts and greatly shorten lifetime.

Fig. 1 shows an inductive load with a free-wheeling diode connected in parallel. This free-wheeling diode provides a path for the inductor current to flow when the current is interrupted by the switch. Without this free-wheeling diode, the voltage across the coil will be limited only by dielectric breakdown voltages of the circuit or parasitic elements of the coil. This voltage can be kilovolts in amplitude even when nominal circuit voltages are low (e. g. 12VDC) see Fig. 2.

The free-wheeling diode should be chosen so that the reverse breakdown voltage is greater than the voltage driving the inductive load. The DC blocking voltage (VR) of the free-wheeling diode can be found in the datasheet of a diode. The forward current should be equal or greater than the maximum current flowing through the load.

To get an efficient protection, the free-wheeling diode must be connected as close as possible to the inductive load!

Switching with inductive load
Fig. 1

Counter EMF over load without free-wheeling diode

Fig. 2

Note for soldering

Process parameter for wave soldering

Basic specification for wave soldering J-STD 75 W4C
Maximum temperature on the component side of the pcb
$120^{\circ} \mathrm{C}$
(Temperature must not exceed during the entire processing)
Preheating phase (t1 ... t2)
Ramp up
Ramp up to maximum temperature (t2 ... t3)
Maximum temperature on the soldering side (Temp 3)
Maximum time of soldering process ($\mathrm{t} 3 \mathrm{~F} . \mathrm{t} 4$)
$70 \ldots 120 \mathrm{sec}$
typ. $+1^{\circ} \mathrm{C} / \mathrm{sec}$
not defined
$250{ }^{\circ} \mathrm{C}$

Ramp down at $170^{\circ} \mathrm{C}$:
3 sec
typ. $-2^{\circ} \mathrm{C} / \mathrm{sec}$

70 Application guidelines

Temperature curve wave soldering

Green curve:
Red curve:
Room temperature:
Preheating:

Temperature on the component side of the pcb Temperature on the soldering side of the pcb

Temp 1
Temperature process $=$ Temp $1 .$. Temp 2
Process time $=\quad \mathrm{t} 1 \ldots \mathrm{t} 2$

Ramp up to soldering temperature: Process time $=\quad$ t2 \ldots t3
Soldering phase: \quad Temperature process $=$ Temp 3
Process time $=\quad$ t3 \ldots t 4

Iron soldering

Basic specification for iron soldering IEC 60068-2-20
Maximum temperature at tip of iron: $\quad 320^{\circ} \mathrm{C}$
Maximum soldering time: 3 sec

Cleaning/Lacquering

The switching elements are not sealed. Cleaning up the PCB may damage the contacts in the switching elements. For this reason, the following points should be noted:

- When soldering make sure that the flux does not pass on the upper side of the PCB.
- When cleaning the PCB with detergents ensure that no dust or other debris may get inside of the switching elements.
- Ensure that no lacquer penetrates into the interior of the switching element when lacquering the PCB.

Storage of components

To obtain the optimum solderability of the components, the following points should be noted during storage:

- Do not store components in locations with high temperature or humidity.
- Do not expose components to corrosive gases.
- Avoid direct sunlight for a long period.

Index from Part No.

Part No. Page

10-2601.3172S 9
10-2601.3173S .9

10-2603.3174S.......... 9
10-2603.3175S......... 9
10-2603.3176S.......... 9
10-2603.3178S 9
70-100.0 5
70-101.0 5
70-201.0 5
70-220.2S 6
70-220.4S 6
70-220.5S 6
70-220.6S.................. 6
70-220.9S 6
70-820.2S 4
70-820.5S 4
70-901.0 8
70-910.0 8
70-911.0 8
70-911.2 7
70-911.3 7
70-911.4 7
70-911.5 7
70-911.9 7
70-912.0 8
70-912.2 8
70-912.3 8
70-912.4 8
70-912.5 8
70-912.9 8
70-920.9 7
70-921.2 7
70-921.3 7
70-921.4 7
70-921.5 7
70-921.6 7
70-921.9 7
70-922.2 7
70-922.3 7
70-922.4 7
70-922.5 7
70-922.6 7
70-922.9 7
92-800.042 4
92-851.342 6

